Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Cell Stem Cell ; 31(4): 554-569.e17, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579685

RESUMO

The YAP/Hippo pathway is an organ growth and size regulation rheostat safeguarding multiple tissue stem cell compartments. LATS kinases phosphorylate and thereby inactivate YAP, thus representing a potential direct drug target for promoting tissue regeneration. Here, we report the identification and characterization of the selective small-molecule LATS kinase inhibitor NIBR-LTSi. NIBR-LTSi activates YAP signaling, shows good oral bioavailability, and expands organoids derived from several mouse and human tissues. In tissue stem cells, NIBR-LTSi promotes proliferation, maintains stemness, and blocks differentiation in vitro and in vivo. NIBR-LTSi accelerates liver regeneration following extended hepatectomy in mice. However, increased proliferation and cell dedifferentiation in multiple organs prevent prolonged systemic LATS inhibition, thus limiting potential therapeutic benefit. Together, we report a selective LATS kinase inhibitor agonizing YAP signaling and promoting tissue regeneration in vitro and in vivo, enabling future research on the regenerative potential of the YAP/Hippo pathway.


Assuntos
Inibidores de Proteínas Quinases , Proteínas Serina-Treonina Quinases , Proteínas de Sinalização YAP , Animais , Humanos , Camundongos , Proliferação de Células , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP/agonistas , Proteínas de Sinalização YAP/efeitos dos fármacos , Proteínas de Sinalização YAP/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia
2.
J Vis Exp ; (204)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38465941

RESUMO

Cellular function critically depends on metabolism, and the function of the underlying metabolic networks can be studied by measuring small molecule intermediates. However, obtaining accurate and reliable measurements of cellular metabolism, particularly in rare cell types like hematopoietic stem cells, has traditionally required pooling cells from multiple animals. A protocol now enables researchers to measure metabolites in rare cell types using only one mouse per sample while generating multiple replicates for more abundant cell types. This reduces the number of animals that are required for a given project. The protocol presented here involves several key differences over traditional metabolomics protocols, such as using 5 g/L NaCl as a sheath fluid, sorting directly into acetonitrile, and utilizing targeted quantification with rigorous use of internal standards, allowing for more accurate and comprehensive measurements of cellular metabolism. Despite the time required for the isolation of single cells, fluorescent staining, and sorting, the protocol can preserve differences among cell types and drug treatments to a large extent.


Assuntos
Fenômenos Fisiológicos Celulares , Metabolômica , Animais , Camundongos , Metabolômica/métodos
3.
EMBO J ; 42(24): e112348, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38010205

RESUMO

During the last decades, remarkable progress has been made in further understanding the complex molecular regulatory networks that maintain hematopoietic stem cell (HSC) function. Cellular and organismal metabolisms have been shown to directly instruct epigenetic alterations, and thereby dictate stem cell fate, in the bone marrow. Epigenetic regulatory enzymes are dependent on the availability of metabolites to facilitate DNA- and histone-modifying reactions. The metabolic and epigenetic features of HSCs and their downstream progenitors can be significantly altered by environmental perturbations, dietary habits, and hematological diseases. Therefore, understanding metabolic and epigenetic mechanisms that regulate healthy HSCs can contribute to the discovery of novel metabolic therapeutic targets that specifically eliminate leukemia stem cells while sparing healthy HSCs. Here, we provide an in-depth review of the metabolic and epigenetic interplay regulating hematopoietic stem cell fate. We discuss the influence of metabolic stress stimuli, as well as alterations occurring during leukemic development. Additionally, we highlight recent therapeutic advancements toward eradicating acute myeloid leukemia cells by intervening in metabolic and epigenetic pathways.


Assuntos
Células-Tronco Hematopoéticas , Leucemia , Humanos , Células-Tronco Hematopoéticas/metabolismo , Leucemia/genética , Leucemia/metabolismo , Diferenciação Celular/fisiologia , Medula Óssea , Epigênese Genética
4.
Exp Hematol ; 128: 10-18, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37816445

RESUMO

Our dietary choices significantly impact all the cells in our body. Increasing evidence suggests that diet-derived metabolites influence hematopoietic stem cell (HSC) metabolism and function, thereby actively modulating blood homeostasis. This is of particular relevance because regulating the metabolic activity of HSCs is crucial for maintaining stem cell fitness and mitigating the risk of hematologic disorders. In this review, we examine the current scientific knowledge of the impact of diet on stemness features, and we specifically highlight the established mechanisms by which dietary components modulate metabolic and transcriptional programs in adult HSCs. Gaining a deeper understanding of how nutrition influences our HSC compartment may pave the way for targeted dietary interventions with the potential to decelerate aging and improve the effectiveness of transplantation and cancer therapies.


Assuntos
Doenças Hematológicas , Células-Tronco Hematopoéticas , Humanos , Células-Tronco Hematopoéticas/metabolismo , Envelhecimento/fisiologia , Doenças Hematológicas/metabolismo
5.
Blood Adv ; 7(24): 7525-7538, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-37639313

RESUMO

Leukemia stem cells (LSCs) share numerous features with healthy hematopoietic stem cells (HSCs). G-protein coupled receptor family C group 5 member C (GPRC5C) is a regulator of HSC dormancy. However, GPRC5C functionality in acute myeloid leukemia (AML) is yet to be determined. Within patient AML cohorts, high GPRC5C levels correlated with poorer survival. Ectopic Gprc5c expression increased AML aggression through the activation of NF-κB, which resulted in an altered metabolic state with increased levels of intracellular branched-chain amino acids (BCAAs). This onco-metabolic profile was reversed upon loss of Gprc5c, which also abrogated the leukemia-initiating potential. Targeting the BCAA transporter SLC7A5 with JPH203 inhibited oxidative phosphorylation and elicited strong antileukemia effects, specifically in mouse and patient AML samples while sparing healthy bone marrow cells. This antileukemia effect was strengthened in the presence of venetoclax and azacitidine. Our results indicate that the GPRC5C-NF-κB-SLC7A5-BCAAs axis is a therapeutic target that can compromise leukemia stem cell function in AML.


Assuntos
Aminoácidos de Cadeia Ramificada , Leucemia Mieloide Aguda , Receptores Acoplados a Proteínas G , Animais , Humanos , Camundongos , Aminoácidos de Cadeia Ramificada/uso terapêutico , Transportador 1 de Aminoácidos Neutros Grandes/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , NF-kappa B/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
6.
JHEP Rep ; 5(8): 100779, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37456678

RESUMO

The process of metabolic liver zonation is spontaneously established by assigning distributed tasks to hepatocytes along the porto-central blood flow. Hepatocytes fulfil critical metabolic functions, while also maintaining hepatocyte mass by replication when needed. Recent technological advances have enabled us to fine-tune our understanding of hepatocyte identity during homeostasis and regeneration. Subsets of hepatocytes have been identified to be more regenerative and some have even been proposed to function like stem cells, challenging the long-standing view that all hepatocytes are similarly capable of regeneration. The latest data show that hepatocyte renewal during homeostasis and regeneration after liver injury is not limited to rare hepatocytes; however, hepatocytes are not exactly the same. Herein, we review the known differences that give individual hepatocytes distinct identities, recent findings demonstrating how these distinct identities correspond to differences in hepatocyte regenerative capacity, and how the plasticity of hepatocyte identity allows for division of labour among hepatocytes. We further discuss how these distinct hepatocyte identities may play a role during liver disease.

7.
Sci Signal ; 16(787): eadh5460, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37253088

RESUMO

Organ size and function critically depend on the tight regulation of cellular turnover. In this issue of Science Signaling, Trinh et al. reveal that hepatic stellate cells play an important role in maintaining liver homeostasis by stimulating midzonal hepatocyte proliferation through the secretion of neurotrophin-3.


Assuntos
Células Estreladas do Fígado , Fígado , Transdução de Sinais , Proliferação de Células
8.
Anal Chem ; 95(9): 4325-4334, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36812587

RESUMO

Metabolism plays a fundamental role in regulating cellular functions and fate decisions. Liquid chromatography-mass spectrometry (LC-MS)-based targeted metabolomic approaches provide high-resolution insights into the metabolic state of a cell. However, the typical sample size is in the order of 105-107 cells and thus not compatible with rare cell populations, especially in the case of a prior flow cytometry-based purification step. Here, we present a comprehensively optimized protocol for targeted metabolomics on rare cell types, such as hematopoietic stem cells and mast cells. Only 5000 cells per sample are required to detect up to 80 metabolites above background. The use of regular-flow liquid chromatography allows for robust data acquisition, and the omission of drying or chemical derivatization avoids potential sources of error. Cell-type-specific differences are preserved while the addition of internal standards, generation of relevant background control samples, and targeted metabolite with quantifiers and qualifiers ensure high data quality. This protocol could help numerous studies to gain thorough insights into cellular metabolic profiles and simultaneously reduce the number of laboratory animals and the time-consuming and costly experiments associated with rare cell-type purification.


Assuntos
Metabolômica , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida/métodos , Metabolômica/métodos , Metaboloma , Fenômenos Fisiológicos Celulares
9.
Nat Cell Biol ; 24(7): 1038-1048, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35725769

RESUMO

Bone marrow haematopoietic stem cells (HSCs) are vital for lifelong maintenance of healthy haematopoiesis. In inbred mice housed in gnotobiotic facilities, the top of the haematopoietic hierarchy is occupied by dormant HSCs, which reversibly exit quiescence during stress. Whether HSC dormancy exists in humans remains debatable. Here, using single-cell RNA sequencing, we show a continuous landscape of highly purified human bone marrow HSCs displaying varying degrees of dormancy. We identify the orphan receptor GPRC5C, which enriches for dormant human HSCs. GPRC5C is also essential for HSC function, as demonstrated by genetic loss- and gain-of-function analyses. Through structural modelling and biochemical assays, we show that hyaluronic acid, a bone marrow extracellular matrix component, preserves dormancy through GPRC5C. We identify the hyaluronic acid-GPRC5C signalling axis controlling the state of dormancy in mouse and human HSCs.


Assuntos
Células-Tronco Hematopoéticas , Ácido Hialurônico , Animais , Medula Óssea , Hematopoese , Humanos , Camundongos , Transdução de Sinais
10.
STAR Protoc ; 3(2): 101408, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35620073

RESUMO

Metabolism is important for the regulation of hematopoietic stem cells (HSCs) and drives cellular fate. Due to the scarcity of HSCs, it has been technically challenging to perform metabolome analyses gaining insight into HSC metabolic regulatory networks. Here, we present two targeted liquid chromatography-mass spectrometry approaches that enable the detection of metabolites after fluorescence-activated cell sorting when sample amounts are limited. One protocol covers signaling lipids and retinoids, while the second detects tricarboxylic acid cycle metabolites and amino acids. For complete details on the use and execution of this protocol, please refer to Schönberger et al. (2022).


Assuntos
Lipidômica , Espectrometria de Massas em Tandem , Cromatografia Líquida , Células-Tronco Hematopoéticas , Metabolômica/métodos , Espectrometria de Massas em Tandem/métodos
11.
Leukemia ; 36(4): 970-982, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34903841

RESUMO

Internal tandem duplications (ITD) of the FMS-like tyrosine kinase 3 (FLT3) predict poor prognosis in acute myeloid leukemia (AML) and often co-exist with inactivating DNMT3A mutations. In vitro studies implicated Grb2-associated binder 2 (GAB2) as FLT3-ITD effector. Utilizing a Flt3-ITD knock-in, Dnmt3a haploinsufficient mouse model, we demonstrate that Gab2 is essential for the development of Flt3-ITD driven AML in vivo, as Gab2 deficient mice displayed prolonged survival, presented with attenuated liver and spleen pathology and reduced blast counts. Furthermore, leukemic bone marrow from Gab2 deficient mice exhibited reduced colony-forming unit capacity and increased FLT3 inhibitor sensitivity. Using transcriptomics, we identify the genes encoding for Axl and the Ret co-receptor Gfra2 as targets of the Flt3-ITD/Gab2/Stat5 axis. We propose a pathomechanism in which Gab2 increases signaling of these receptors by inducing their expression and by serving as downstream effector. Thereby, Gab2 promotes AML aggressiveness and drug resistance as it incorporates these receptor tyrosine kinases into the Flt3-ITD signaling network. Consequently, our data identify GAB2 as a promising biomarker and therapeutic target in human AML.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Leucemia Mieloide Aguda , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Humanos , Leucemia Mieloide Aguda/patologia , Camundongos , Mutação , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Tirosina Quinase 3 Semelhante a fms/metabolismo
12.
Cell Stem Cell ; 29(1): 131-148.e10, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34706256

RESUMO

Hematopoietic stem cells (HSCs) rely on complex regulatory networks to preserve stemness. Due to the scarcity of HSCs, technical challenges have limited our insights into the interplay between metabolites, transcription, and the epigenome. In this study, we generated low-input metabolomics, transcriptomics, chromatin accessibility, and chromatin immunoprecipitation data, revealing distinct metabolic hubs that are enriched in HSCs and their downstream multipotent progenitors. Mechanistically, we uncover a non-classical retinoic acid (RA) signaling axis that regulates HSC function. We show that HSCs rely on Cyp26b1, an enzyme conventionally considered to limit RA effects in the cell. In contrast to the traditional view, we demonstrate that Cyp26b1 is indispensable for production of the active metabolite 4-oxo-RA. Further, RA receptor beta (Rarb) is required for complete transmission of 4-oxo-RA-mediated signaling to maintain stem cells. Our findings emphasize that a single metabolite controls stem cell fate by instructing epigenetic and transcriptional attributes.


Assuntos
Células-Tronco Hematopoéticas , Tretinoína , Diferenciação Celular , Ácido Retinoico 4 Hidroxilase/genética , Transdução de Sinais , Tretinoína/farmacologia
13.
Blood ; 137(23): 3218-3224, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33754628

RESUMO

Hematopoietic stem cells (HSCs) and distinct multipotent progenitor (MPP) populations (MPP1-4) contained within the Lin-Sca-1+c-Kit+ (LSK) compartment have previously been identified using diverse surface-marker panels. Here, we phenotypically define and functionally characterize MPP5 (LSK CD34+CD135-CD48-CD150-). Upon transplantation, MPP5 supports initial emergency myelopoiesis followed by stable contribution to the lymphoid lineage. MPP5, capable of generating MPP1-4 but not HSCs, represents a dynamic and versatile component of the MPP network. To characterize all hematopoietic stem and progenitor cells, we performed RNA-sequencing (RNA-seq) analysis to identify specific transcriptomic landscapes of HSCs and MPP1-5. This was complemented by single-cell RNA-seq analysis of LSK cells to establish the differentiation trajectories from HSCs to MPP1-5. In agreement with functional reconstitution activity, MPP5 is located immediately downstream of HSCs but upstream of the more committed MPP2-4. This study provides a comprehensive analysis of the LSK compartment, focusing on the functional and molecular characteristics of the newly defined MPP5 subset.


Assuntos
Antígenos CD/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Multipotentes/metabolismo , Animais , Camundongos
14.
Nat Commun ; 12(1): 608, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504783

RESUMO

Haematopoietic stem cells (HSCs) are characterized by their self-renewal potential associated to dormancy. Here we identify the cell surface receptor neogenin-1 as specifically expressed in dormant HSCs. Loss of neogenin-1 initially leads to increased HSC expansion but subsequently to loss of self-renewal and premature exhaustion in vivo. Its ligand netrin-1 induces Egr1 expression and maintains quiescence and function of cultured HSCs in a Neo1 dependent manner. Produced by arteriolar endothelial and periarteriolar stromal cells, conditional netrin-1 deletion in the bone marrow niche reduces HSC numbers, quiescence and self-renewal, while overexpression increases quiescence in vivo. Ageing associated bone marrow remodelling leads to the decline of netrin-1 expression in niches and a compensatory but reversible upregulation of neogenin-1 on HSCs. Our study suggests that niche produced netrin-1 preserves HSC quiescence and self-renewal via neogenin-1 function. Decline of netrin-1 production during ageing leads to the gradual decrease of Neo1 mediated HSC self-renewal.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Proteínas de Membrana/metabolismo , Netrina-1/metabolismo , Nicho de Células-Tronco , Animais , Arteríolas/metabolismo , Diferenciação Celular , Proliferação de Células , Senescência Celular , Deleção de Genes , Transplante de Células-Tronco Hematopoéticas , Camundongos Mutantes , Camundongos Transgênicos , Transdução de Sinais
16.
GMS Hyg Infect Control ; 14: Doc06, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293877

RESUMO

In July/August 2018, a measles outbreak occurred in a reception facility for asylum seekers in Regensburg, Bavaria, Germany. A five-year-old child and an 18-year-old man from Moldova were affected. At the time of the report, 491 people were accommodated at the facility. The outbreak was limited to the two cases mentioned by the consistent use of infection control measures. Decisive factors for successfully combating this outbreak were, in particular, the close cooperation of the local public health authority (Gesundheitsamt) with the district government officials, the institution's management, and the general practitioners on site. The measures taken included the early information of all parties involved, the timely and repeated implementation of containment vaccinations, a consequent segregation of contagion and/or disease suspects and the critical consideration of each individual case in connection with the separate risk-adapted segregation of particularly vulnerable cohorts.

17.
Food Environ Virol ; 11(2): 149-156, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30868371

RESUMO

Hepatitis A (HAV) is a viral infection causing a range of symptoms, sudden onset of fever, malaise, diarrhea, and jaundice. It is mostly transmitted fecal-oral through contaminated food, with immediate household and sexual contacts having a higher risk of infection. Since 2016 an increased number of HAV infections, mostly affecting men who have sex with men (MSM) have been noticed worldwide, with three main genotypes circulating. We report here on the first spillover outbreak of the MSM-associated HAV genotype RIVM-HAV16-090 in the German general population in November 2017-February 2018. In total, twelve cases could be attributed to the outbreak with the index case and a coworker in a butchers shop being the most probable source of the outbreak. The identical HAV genotype was detected in two environmental samples in the premises of the butchers shop and in nine cases. Outbreak control measures included detailed contact tracing and stool examinations, several environmental investigations, thorough cleaning, and disinfection of the premises of the butchers shop. Post-exposure vaccination was recommended to all unprotected contacts during the investigation. Furthermore, although hand-washing facilities were in accordance with the required law, additional installment of soap and disinfectant dispensers and contactless faucets has been recommended.


Assuntos
Vírus da Hepatite A/isolamento & purificação , Hepatite A/virologia , Homossexualidade Masculina/estatística & dados numéricos , Adulto , Criança , Pré-Escolar , Surtos de Doenças , Feminino , Manipulação de Alimentos , Genótipo , Alemanha , Desinfecção das Mãos , Hepatite A/epidemiologia , Vírus da Hepatite A/classificação , Vírus da Hepatite A/genética , Humanos , Masculino , Pessoa de Meia-Idade , Filogenia
18.
Sci Rep ; 9(1): 2110, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30765776

RESUMO

The long non-coding RNA (lncRNA) Maternally Expressed Gene 3 (Meg3) is encoded within the imprinted Dlk1-Meg3 gene locus and is only maternally expressed. Meg3 has been shown to play an important role in the regulation of cellular proliferation and functions as a tumor suppressor in numerous tissues. Meg3 is highly expressed in mouse adult hematopoietic stem cells (HSCs) and strongly down-regulated in early progenitors. To address its functional role in HSCs, we used MxCre to conditionally delete Meg3 in the adult bone marrow of Meg3mat-flox/pat-wt mice. We performed extensive in vitro and in vivo analyses of mice carrying a Meg3 deficient blood system, but neither observed impaired hematopoiesis during homeostatic conditions nor upon serial transplantation. Furthermore, we analyzed VavCre Meg3mat-flox/pat-wt mice, in which Meg3 was deleted in the embryonic hematopoietic system and unexpectedly this did neither generate any hematopoietic defects. In response to interferon-mediated stimulation, Meg3 deficient adult HSCs responded highly similar compared to controls. Taken together, we report the finding, that the highly expressed imprinted lncRNA Meg3 is dispensable for the function of HSCs during homeostasis and in response to stress mediators as well as for serial reconstitution of the blood system in vivo.


Assuntos
Transplante de Medula Óssea , Regulação Neoplásica da Expressão Gênica , Hematopoese , Células-Tronco Hematopoéticas/citologia , RNA Longo não Codificante/genética , Animais , Proliferação de Células , Feminino , Impressão Genômica , Células-Tronco Hematopoéticas/metabolismo , Masculino , Camundongos , Camundongos Knockout
19.
Euro Surveill ; 23(10)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29536830

RESUMO

Background and aimAs a consequence of socioeconomic and political crises in many parts of the world, many European Union/European Economic Area (EU/EEA) countries have faced an increasing number of migrants. In the German federal state of Bavaria, a mandatory health screening approach is implemented, where individuals applying for asylum have to undergo a medical examination that includes serological testing for HIV and hepatitis B, screening for tuberculosis, and until September 2015, stool examination for Salmonella spp. and Shigella spp.. Methods: Data from mandatory screening of all first-time asylum seekers in Bavaria in 2015 was extracted from the mandatory notification and laboratory information system and evaluated. Results: The HIV positivity and hepatitis B surface antigen (HBsAg) positivity rate of tested samples from asylum seekers were 0.3% and 3.3%, respectively, while detection rate of active tuberculosis was between 0.22% and 0.38%. The rates for HIV, hepatitis B, and tuberculosis among asylum seekers were similar to the corresponding prevalence rates in most of their respective countries of birth. Only 47 Salmonella spp. (0.1%) were isolated from stool samples: 45 enteric and two typhoid serovars. Beyond mandatory screening, louse-borne relapsing fever was found in 40 individuals. Conclusions: These results show that mandatory screening during 2015 in Bavaria yielded overall low positivity rates for all tested infectious diseases in asylum seekers. A focus of mandatory screening on specific diseases in asylum seekers originating from countries with higher prevalence of those diseases could facilitate early diagnosis and provision of treatment to affected individuals while saving resources.


Assuntos
Doenças Transmissíveis/epidemiologia , Testes Obrigatórios , Programas de Rastreamento , Refugiados/estatística & dados numéricos , Tuberculose Pulmonar/epidemiologia , Adolescente , Adulto , África/etnologia , Idoso , Ásia/etnologia , Criança , Pré-Escolar , Europa Oriental/etnologia , Alemanha/epidemiologia , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Migrantes , Tuberculose Pulmonar/diagnóstico , Adulto Jovem
20.
Infection ; 46(1): 69-76, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29086356

RESUMO

OBJECTIVES: Influenza with its annual epidemic waves is a major cause of morbidity and mortality worldwide. However, only little whole genome data are available regarding the molecular epidemiology promoting our understanding of viral spread in human populations. METHODS: We implemented a RT-PCR strategy starting from patient material to generate influenza A whole genome sequences for molecular epidemiological surveillance. Samples were obtained within the Bavarian Influenza Sentinel. The complete influenza virus genome was amplified by a one-tube multiplex RT-PCR and sequenced on an Illumina MiSeq. RESULTS: We report whole genomic sequences for 50 influenza A H3N2 viruses, which was the predominating virus in the season 2014/15, directly from patient specimens. The dataset included random samples from Bavaria (Germany) throughout the influenza season and samples from three suspected transmission clusters. We identified the outbreak samples based on sequence identity. Whole genome sequencing (WGS) was superior in resolution compared to analysis of single segments or partial segment analysis. Additionally, we detected manifestation of substantial amounts of viral quasispecies in several patients, carrying mutations varying from the dominant virus in each patient. CONCLUSION: Our rapid whole genome sequencing approach for influenza A virus shows that WGS can effectively be used to detect and understand outbreaks in large communities. Additionally, the genomic data provide in-depth details about the circulating virus within one season.


Assuntos
Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Vírus da Influenza A Subtipo H3N2/fisiologia , Influenza Humana/diagnóstico , Sequenciamento Completo do Genoma/métodos , Genoma Viral , Alemanha , Humanos , Vírus da Influenza A Subtipo H3N2/genética , Influenza Humana/virologia , Sequenciamento Completo do Genoma/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...